コンデンサのエネルギー

コンデンサに蓄えられるエネルギー ⇒#12@計算; 検索 編集 関連する 物理量 エネルギー 電気量 電圧 コンデンサ にたくわえられる エネルギー は 、 電圧 に比例します 。 2. 2電解コンデンサの数 1) 交流回路とインピーダンス 2) 【 計算式 】 コンデンサの静電エネルギー 3) ( 1) > 2. 2電解コンデンサの数 永田伊佐也, 電解液陰極アルミニウム電解コンデンサ, 日本蓄電器工業株式会社,, ( 1997). ( 2) > 交流回路とインピーダンス 中村英二、吉沢康和, 新訂物理図解, 第一学習社,, ( 1984). ( 3) コンデンサの静電エネルギー,, ( 計算). 物理は自然を測る学問。物理を使えば、 いつ でも、 どこ でも、みんな同じように測れます。 その基本となるのが 量 と 単位 で、その比を数で表します。 量にならない 性状 も、序列で表すことができます。 物理量 は 単位 の倍数であり、数値と 単位 の積として表されます。 量 との関係は、 式 で表すことができ、 数式 で示されます。 単位 が変わっても 量 は変わりません。 自然科学では 数式 に 単位 をつけません。 そのような数式では、数式の記号がそのまま物理量の記号を粟原素のでを量方程式と言います。 表 * 基礎物理定数 物理量 記号 数値 単位 真空の透磁率 permeability of vacuum μ 0 4 π ×10 -2 NA -2 真空中の光速度 speed of light in vacuum c, c 299792458 ms -1 真空の誘電率 permittivity of vacuum ε = 1/ 2 8. 854187817... コンデンサに蓄えられるエネルギー. ×10 -12 Fm -1 電気素量 elementary charge e 1. 602176634×10 -19 C プランク定数 Planck constant h 6. 62607015×10 -34 J·s ボルツマン定数 Boltzmann constant k B 1. 380649×10 -23 アボガドロ定数 Avogadro constant N A 6. 02214086×10 23 mol −1
12
伊藤智博, 立花和宏.

コンデンサーの過渡現象 [物理のかぎしっぽ]

【コンデンサに蓄えられるエネルギー】 静電容量 C [F],電気量 Q [C],電圧 V [V]のコンデンサに蓄えられているエネルギー W [J]は W= QV Q=CV の公式を使って書き換えると W= CV 2 = これらの公式は C=ε を使って表すこともできる. ■(昔,高校で習った解説) この解説は,公式をきれいに導けて,結論は正しいのですが,筆者としては子供心にしっくりこないところがありました.詳しくは右下の※を見てください. 図1のようなコンデンサで,両極板の電荷が0の状態から電荷が各々 +Q [C], −Q [C]に帯電させるまでに必要な仕事を計算する.そのために,図のように陰極板から少しずつ( ΔQ [C]ずつ)電界から受ける力に逆らって電荷を陽極板まで運ぶに要する仕事を求める. 一般に +q [C]の電荷が電界の強さ E [V/m]から受ける力は F=qE [N] コンデンサ内部における電界の強さは,極板間電圧 V [V]とコンデンサの極板間隔 d [m]で表すことができ E= である. したがって, ΔQ [C]の電荷が,そのときの電圧 V [V]から受ける力は F= ΔQ [N] この力に抗して ΔQ [C]の電荷を極板間隔 d [m]だけ運ぶに要する仕事 ΔW [J]は ΔW= ΔQ×d=VΔQ= ΔQ [N] この仕事を極板間電圧が V [V]になるまで足していけばよい. ○ 初めは両極板は帯電していないので, E=0, F=0, Q=0 ΔW= ΔQ=0 ○ 両極板の電荷が各々 +Q [C], −Q [C]に帯電しているときの仕事は,上で検討したように ΔW= ΔQ → これは,右図2の茶色の縦棒の面積に対応している. ○ 最後の方になると,電荷が各々 +Q 0 [C], −Q 0 [C]となり,対応する電圧,電界も強くなる. コンデンサーの過渡現象 [物理のかぎしっぽ]. ○ 右図の茶色の縦棒の面積の総和 W=ΣΔW が求める仕事であるが,それは図2の三角形の面積 W= Q 0 V 0 になる. 図1 図2 一般には,このような図形の面積は定積分 W= _ dQ= で求められる. 以上により, W= Q 0 V 0 = CV 0 2 = ※以上の解説について,筆者が「しっくりこない」「違和感がある」理由は2つあります. 1つ目は,両極板が帯電していない状態から電気を移動させて充電していくという解説方法で,「充電されたコンデンサにはどれだけの電気的エネルギーがあるか」という問いに答えずに「コンデンサを充電するにはどれだけの仕事が必要か」という「力学的エネルギー」の話にすり替わっています.

コンデンサに蓄えられるエネルギー

回路方程式 (1)式の両辺に,電流 をかけてみます. 左辺が(6)式の仕事率の形になりました. 両辺を時間 で から まで積分します.初期条件は でしたので, となります.この式は,左辺が 電池のした仕事 ,右辺の第一項が時刻 までに発生した ジュール熱 ,右辺第二項が(時刻 で) コンデンサーのもつエネルギー です. (7)式において の極限を考えると,電池が過渡現象を経てした仕事 は最終的にコンデンサに蓄えられた電荷 を用いて と書けます.過渡的状態を経て平衡状態になると,コンデンサーと電圧と電荷量の関係式 が使えるので右辺第二項に代入して となります.ここで は静電エネルギー, は平衡状態に至るまでに抵抗で発生したジュール熱で, です. (11)式に先ほど求めた(4)式の電流 を代入すると, 結局どういうことか? 上の謎解きから,電池のした仕事 は,回路の抵抗で発生したジュール熱 と コンデンサに蓄えられたエネルギー に化けていたということが分かりました. つまりエネルギー保存則はきちんと成り立っていたわけです.

演算処理と数式処理~微分方程式はコンピュータで解こう~. 山形大学, 情報処理概論 講義ノート, 2014., (参照 2017-5-30 ).