まいにち積分・10月1日 - Towertan’s Blog

この「すべての解」の集合を微分方程式(11)の 解空間 という. 「関数が空間を作る」なんて直感的には分かりにくいかもしれない. でも,基底 があるんだからなんかベクトルっぽいし, ベクトルの係数を任意にすると空間を表現できるように を任意としてすべての解を表すこともできる. 「ベクトルと関数は一緒だ」と思えてきたんじゃないか!? さて内積のお話に戻ろう. いま解空間中のある一つの解 を (15) と表すとする. この係数 を求めるにはどうすればいいのか? 「え?話が逆じゃね? を定めると が定まるんだろ?いまさら求める必要ないじゃん」 と思った君には「係数 を, を使って表すにはどうするか?」 というふうに問いを言い換えておこう. ここで, は に依存しない 係数である,ということを強調して言っておく. まずは を求めてみよう. にかかっている関数 を消す(1にする)ため, (14)の両辺に の複素共役 をかける. (16) ここで になるからって, としてしまうと, が に依存してしまい 定数ではなくなってしまう. そこで,(16)の両辺を について区間 で積分する. (17) (17)の下線を引いた部分が0になることは分かるだろうか. 被積分関数が になり,オイラーの公式より という周期関数の和になることをうまく利用すれば求められるはずだ. あとは両辺を で割るだけだ. やっと を求めることができた. (18) 計算すれば分母は になるのだが, メンドクサイ 何か法則性を見出せそうなので,そのままにしておく. 同様に も求められる. 分母を にしないのは, 決してメンドクサイからとかそういう不純な理由ではない! 本当だ. (19) さてここで,前の項ではベクトルは「内積をとれば」「係数を求められる」と言った. 関数の場合は,「ある関数の複素共役をかけて積分するという操作をすれば」「係数を求められた」. ということは, ある関数の複素共役をかけて積分するという操作 を 関数の内積 と定義できないだろうか! もう少し一般的でカッコイイ書き方をしてみよう. 区間 上で定義される関数 について, 内積 を以下のように定義する. フーリエ級数展開を分かりやすく解説 / 🍛🍛ハヤシライスBLOG🍛🍛. (20) この定義にしたがって(18),(19)を書き換えてみると (21) (22) と,見事に(9)(10)と対応がとれているではないか!

三角関数の直交性 大学入試数学

大学レベル 2021. 07. 15 2021. 05. 04 こんにちは,ハヤシライスBLOGです!今回はフーリエ級数展開についてできるだけ分かりやすく解説します! フーリエ級数展開とは? フーリエ級数展開をざっくり説明すると,以下のようになります(^^)/ ・任意の周期関数は,色々な周波数の三角関数の和によって表せる(※1) ・それぞれの三角関数の振幅は,三角関数の直交性を利用すれば,簡単に求めることができる! 図1 フーリエ級数展開のイメージ フーリエ級数展開は何に使えるか? フーリエ級数展開の考え方を利用すると, 周期的な関数や波形の中に,どんな周波数成分が,どんな振幅で含まれているのかを簡単に把握することができます! 図2 フーリエ級数展開の活用例 フーリエ級数展開のポイント 周期T秒で繰り返される周期的な波形をx(t)とすると,以下のように, x(t)はフーリエ級数展開により,色々な周波数の三角関数の無限和としてあらわすことができます! 三角関数の直交性 クロネッカーのデルタ. (※1) そのため, フーリエ係数と呼ばれるamやbm等が分かれば,x(t)にどんな周波数成分の三角関数が,どんな大きさで含まれているかが分かります。 でも,利用できる情報はx(t)の波形しかないのに, amやbmを本当に求めることができるのでしょうか?ここで絶大な威力を発揮するのが三角関数の直交性です! 図3 フーリエ級数展開の式 三角関数の直交性 三角関数の直交性について,ここでは結果だけを示します! 要するに, sin同士の積の積分やcos同士の積の積分は,周期が同じでない限り0となり,sinとcosの積の積分は,周期が同じかどうかによらず0になる ,というものです。これは, フーリエ係数を求める時に,絶大ない威力を発揮します ので,必ずおさえておきましょう(^^)/ 図4 三角関数の直交性 フーリエ係数を求める公式 三角関数の直交性を利用すると,フーリエ係数は以下の通りに求めることができます!信号の中に色々な周波数成分が入っているのに, 大きさが知りたい周期のsinあるいはcosを元の波形x(t)にかけて積分するだけで,各フーリエ係数を求めることができる のは,なんだか不思議ですが,その理由は下の解説編でご説明いたします! 私はこの原理を知った時,感動したのを覚えています(笑) 図5 フーリエ係数を求める公式 フーリエ係数を求める公式の解説 それでは,三角関数の直交性がどのように利用され,どのような過程を経て上のフーリエ係数の公式が導かれるのかを,周期T/m[s](=周波数m/T[Hz])のフーリエ係数amを例に解説します!

三角関数の直交性 証明

format (( 1 / pi))) #モンテカルロ法 def montecarlo_method ( self, _n): alpha = _n beta = 0 ran_x = np. random. rand ( alpha) ran_y = np. rand ( alpha) ran_point = np. hypot ( ran_x, ran_y) for i in ran_point: if i <= 1: beta += 1 pi = 4 * beta / alpha print ( "MonteCalro_Pi: {}". format ( pi)) n = 1000 pi = GetPi () pi. numpy_pi () pi. arctan () pi. leibniz_formula ( n) pi. basel_series ( n) pi. machin_like_formula ( n) pi. ramanujan_series ( 5) pi. 三角関数の直交性の証明【フーリエ解析】 | k-san.link. montecarlo_method ( n) 今回、n = 1000としています。 (ただし、ラマヌジャンの公式は5としています。) 以下、実行結果です。 Pi: 3. 141592653589793 Arctan_Pi: 3. 141592653589793 Leibniz_Pi: 3. 1406380562059932 Basel_Pi: 3. 140592653839791 Machin_Pi: 3. 141592653589794 Ramanujan_Pi: 3. 141592653589793 MonteCalro_Pi: 3. 104 モンテカルロ法は収束が遅い(O($\frac{1}{\sqrt{n}}$)ので、あまり精度はよくありません。 一方、ラマヌジャンの公式はNumpy. piや逆正接関数の値と完全に一致しています。 最強です 先程、ラマヌジャンの公式のみn=5としましたが、ほかのやつもn=5でやってみましょう。 Leibniz_Pi: 2. 9633877010385707 Basel_Pi: 3. 3396825396825403 MonteCalro_Pi: 2. 4 実行結果を見てわかる通り、ラマヌジャンの公式の収束が速いということがわかると思います。 やっぱり最強!

三角関数の直交性 クロネッカーのデルタ

したがって, フーリエ級数展開は完全性を持っている のだ!!! 大げさに言うと,どんなワケのわからない関数でも,どんな複雑な関数でも, この世のすべての関数は三角関数で表すことができるのだ! !

ここでは、 f_{x}=x ここで、f(x)は (-2\pi \leqq{x} \leqq 2\pi) で1周期の周期関数とします。 これに、 フーリエ級数 を適用して計算していきます。 その結果をグラフにしたものが下図です。 考慮する高調波数別のグラフ変動 この結果より、k=1、すなわち、考慮する高調波が0個のときは完全な正弦波のみとなっていますが、高調波を加算していくと、$$y=f(x)$$に近づいていく事が分かります。また、グラフの両端は周期関数のため、左側では、右側の値に近づこうとし、右側では左側の値に近づこうとしているため、屈曲した形となります。 まとめ 今回は フーリエ級数展開 について記事にしました。kの数を極端に多くすることで、任意の周期関数とほとんど同じになることが確認できました。 フーリエ級数 よりも フーリエ変換 の方が実用的だとおもいますので、今度時間ができたら フーリエ変換 についても記事にしたいと思います!

1)の 内積 の 積分 内の を 複素共役 にしたものになっていることに注意します. (2. 1) 以下が成り立ちます(簡単な計算なので証明なしで認めます). (2. 2) したがって以下の関数列は の正規直交系です. (2. 3) 実数値関数の場合(2. 1)の類推から以下を得ます. (2. 4) 文献[2]の命題3. と定理3. も参考になります. フーリエ級数 は( ノルムの意味で)収束することが確認できます. [ 2. 実数表現と 複素数 表現の等価性] 以下の事実を示します. ' -------------------------------------------------------------------------------------------------------------------------------------------- 事実. 実数表現(2. 1)と 複素数 表現(2. 4)は等しい. 証明. (2. 1) (2. 3) よって(2. 2)(2. 3)より以下を得る. (2. 4) ここで(2. 1)(2. 4)を用いれば(2. 1)と(2. 4)は等しいことがわかる. (証明終わり) '-------------------------------------------------------------------------------------------------------------------------------------------- ================================================================================= 以上, フーリエ級数 の基礎をまとめました. 三角関数 による具体的な表現と正規直交系による抽象的な表現を併せて明示することで,より理解が深まる気がします. 参考文献 [1] Kreyszig, E. (1989), Introductory Functional Analysis with Applications, Wiley. 三角関数の直交性 証明. [2] 東京大学 木田良才先生のノート [3] 名古屋大学 山上 滋 先生のノート [4] 九州工業大学 鶴 正人 先生のノート [5] 九州工業大学 鶴 正人 先生のノート [6] Wikipedia Fourier series のページ [7] Wikipedia Inner product space のページ [8] Wikipedia Hilbert space のページ [9] Wikipedia Orthogonality のページ [10] Wikipedia Orthonormality のページ [11] Wikipedia space のページ [12] Wikipedia Square-integrable function のページ [13] National Cheng Kung University Jia-Ming Liou 先生のノート

June 2, 2024, 10:44 pm