リチウムイオン電池の特徴 | Techs Blog

【材料/溶接/加工/表面処理】 2020年9月14日 2021年6月24日 今回は「ユニクロめっきの有害性と三価クロメート」についての記事です。 ユニクロめっきと言えば、金属の表面処理としては定番でしたが、昨今は三価クロメートに移行してきています。 今回は私が実感していることを含めて表面処理についてお話しようと思います。 ユニクロめっきの有害性と規制 機械装置にはあらゆる金属部品が使用されていますが、その金属部品には表面処理されることが一般的です。 なかでも材質が「鉄」のように「錆び」が発生する部品には必ずと言っていいほど表面処理を施します。 めっきされた部品 表面処理の種類には「めっき」や「塗装」がありますが、 安価で一度に多くの処理ができる表面処理として「ユニクロめっき」が主流 でしたが、現在はある事情から使用しないように変わってきています。(現在でも使用している装置メーカーはあります) *表面処理についてはこちらの記事でも紹介しています ⇒ 「表面処理の違いによる膜厚/厚みと寸法変化の実験データ」 めっきに使用される物質に六価クロムがありますが、この 六価クロムは非常に有害 です。 引用抜粋:日本化学工業六価クロム事件 六価クロムの悪影響(健康) 六価クロムは毒性で0.

ユニクロめっきの有害性と規制/ユニクロめっきと三価クロメートの違い | 機械組立の部屋 Kikaikumitate.Com

この様な問題を考えると、三価クロメートに完全移行して、多少納期がかかったりコストがアップしてしまうことも致し方がないと言うことになったのです。 三価クロメートに完全移行したときには、戸惑いや混乱もありましたがそれは一時的なことでした。現在では納期やコストの問題も全く影響がなく作業ができています。 まとめ 今回はユニクロめっきと三価クロメートについて、私の感じていることをまじえてまとめてみました。まだまだユニクロめっきが主流のようですが、今後は「使用禁止になるか」「自然と需要がなくなるのか」何らかの影響で無くなっていくかもしれませんね。六価クロムの悪影響を考えれば当たり前かもしれません。 関連記事: 【材料/溶接/加工/表面処理】 以上です。 ⇩ この記事が良かったらシェアお願いします ⇩ - 【材料/溶接/加工/表面処理】 - ねじ/ボルト, めっき/塗装

アルマイト処理について解説!アルマイト処理のメリットについても解説! | 金属加工の見積りサイトMitsuri(ミツリ)

電解着色 引用元: 三協立山株式会社 再び陽極酸化処理を行い、酸化皮膜表面に形成された穴の底に塗料やアルミ以外の金属粒子を電着させる工程 です。染料を電着するカラーアルマイト処理については後述します。 金属粒子を電着させる交流電解着色では、 スズやニッケルなどを含む金属塩水溶液中へ交流電流を加えることで再度電解処理を施します。 それによって穴に金属粒子が入り込み、酸化皮膜を補強すると共に防サビ性能が向上します。さらに 着色も行うことが可能 です。 例えば、スズやニッケルでは、黄色やブロンズ、黒色、またそれらの中間色を着けることができます。なお、色調は、電解液の成分や濃度、浸漬時間などによって変化させることが可能です。 交流電解着色を施したアルマイトは、 日光に対する堅牢性が高く、紫外線などで変退色しにくいという特徴 を持ちます。そのため、アルミサッシなどの屋外で用いられるアルミ製品に頻繁に採用されます。 7.

銅 - 生体内での働きと毒性 - Weblio辞書

003mg/L以下であること。 カドミウムは、富山県の神通川でイタイイタイ病の原因となった物質として有名です。肝臓、腎臓に蓄積し、急性中毒として嘔吐、めまい、頭痛など、慢性中毒として異常疲労、貧血、骨軟化症などの症状があらわれます。また、メッキや充電池(ニッカドはニッケル・カドミウムの略)の原料等として使われているため、これらの工場排水や亜鉛の鉱山排水が汚染源として考えられます。水質基準値は、毒性を考慮して設定されています。 水銀の量に関して、0. 0005mg/L以下であること。 水銀は、体温計や温度計に良く使われていましたし、水俣病の原因となった物質としても有名です。体温計や温度計に使われる水銀は、純粋な水銀で人体に入ってもほとんどが排出されます。しかし、水俣病の原因にもなった有機物と反応した水銀は、排出されにくいため蓄積性が高く、低濃度でも中毒症状がでます。症状としては知覚障害、言語障害等があらわれます。水銀は、一般にも多く使われており、廃棄物処理場や水銀を使用する工場排水が汚染源として考えられます。水質基準値は、毒性を考慮して設定されています。 セレンの量に関して、0. 銅 - 生体内での働きと毒性 - Weblio辞書. 01mg/L以下であること。 セレンは、あまり馴染みのない金属ですが、半導体の原料として多く使われており、体内に入ると低濃度でも急性中毒として皮膚障害、嘔吐、全身けいれんなど、慢性中毒として皮膚障害、胃腸障害、貧血などの症状があらわれます。汚染源は、鉱山やセレン製品製造所が考えられます。水質基準値は、毒性を考慮して設定されています。 鉛の量に関して、0. 01mg/L以下であること。 鉛は、バッテリーや合金、塗料など多種に使用されています。水道では昔、曲げたり、切ったりする加工が容易なことから鉛製の水道管が使用されていました。現在の水道管は、ほとんどが鉄製や塩化ビニル(塩ビ)製になっています。急性中毒として嘔吐、腹痛、下痢、血圧降下など、慢性中毒として疲労、けいれん、便秘などの症状があらわれます。また、乳幼児の血中鉛濃度が増すと知能指数の低下に関連するとの報告もあります。水質基準値は、毒性を考慮して設定されています。 ヒ素の量に関して、0. 01mg/L以下であること。 ヒ素は、和歌山カレーヒ素混入事件でもご存知のとおり、毒性の強い物質です。半導体材料やねずみを殺す薬剤などとして利用されています。地質により、地下水で検出されることが多い物質です。急性中毒として嘔吐、下痢、腹痛など、慢性中毒として皮膚の角化症、黒皮症、末梢神経炎などの症状があらわれます。また、発がん性物質としても知られています。工場排水や温泉、鉱山排水などが汚染源として考えられます。水質基準値は、毒性を考慮して設定されています。 六価クロムの量に関して、0.

潤滑油のベース油は一般的にはベースオイルまたは基油と呼ばれ,大きく分けると,鉱油系,合成油系とに分類されます。鉱油系とは石油の潤滑油留分を精製したものであり,その成分によりパラフィン系,ナフテン系に分かれます。各種潤滑油の製造に使われるベース油(基油)の品質性状について解説します。 ベースオイルの品質性状 解説します。 潤滑油のベース油は一般的にはベースオイルまたは基油と呼ばれ,大きく分けると,鉱油系,合成油系とに分類されます。 鉱油系とは石油の潤滑油留分を精製したものであり,潤滑油の大半(90%以上)は鉱油が用いられており,その成分によりパラフィン系,ナフテン系に分かれます。ベースオイル組成分析に多用される環分析(n-d-M法)ではパラフィン炭素数,ナフテン炭素数,芳香族炭素数をそれぞれ%CP,%CN,%CAとして全炭素に対する割合で表示され,一般的には%CPが50以上をパラフィン系,%CNが30~45をナフテン系と呼んでいます。 1. パラフィン系ベースオイル 現在,潤滑油に中心的に使用されているのは鉱油系のパラフィン系ベースオイルであり,低粘度のスピンドル油から高粘度シリンダー油まで各種のものがあり,その炭素数はC15~C50,分子量は200~700,常圧換算沸点は250~600℃の範囲にあります。その種類はSUS粘度(Saybolt Universal Second)を用い区別されており,SUS/100Fの粘度で60~700程度の留分はニュートラル油(Neutrals)と呼ばれ,また減圧蒸留残油を脱歴精製したものはブライトストック(Bright Stocks)と呼ばれSUS210F粘度で表されます。 パラフィン系ベースオイルの精製工程は 図1 に示すようにパラフィン系炭化水素を多く含む原油の常圧蒸留残油を原料に減圧蒸留,溶剤脱歴処理を行いその後,溶剤精製法または水素化分解法処理を行います。特徴としては,粘度指数が高いが一般的に流動点も高くなります。 表1 に代表的なパラフィン系ベースオイルの一般性状を見てみましょう。 図1 表1 代表的なパラフィン系ベースオイルの一般性状 GRADE 100 Neutral 150 Neutral 500 Neutral 150 Bright Stock 密度(15℃) g/cm 3 0. 850 0. 870 0. 887 0.

May 20, 2024, 6:00 am